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Frequency Response of Multipass Shell-and-Tube Heat Exchangers

LEWIS ISCOL R ). ALTPETER

NOMENCLATURE

The following nomenclature 1s used in the paper:

a, =% (@) SRR
W Cp Pl
a =5 (a1) VR
Wy Cy
A = heat transfer area per pass (sq ft)
b, = Py A (a1)
Cwfe Fo Vo
I (d1) b
- We R Ry W T
¢ = heat capacity (BTU/1b F°)
C, C’ = arbitrary constants (d1)
d@ = thermal diffusivity of pipe wall (sq ft/hr)
. D = intermediate parameter (dl)
e = 2,7182818... (d1)
E = intermediate parameter (°F)
f = intermediate parameter (dl)
F = cross sectional area of metal in pipe wall (sq ft)
g = intermediate parameter (dl)
h = heat transfer coefficient (BTU/hr sq ft F°)
k = thermal conductivity (BTU/hr ft F°)
K = intermediate parameter (dl)
L = tube length per pass (ft)
m = number of shell passes (dl1)
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Intermediate parameter (d1)

number of tube passes in each direction per shell pass (a1)
intermediate parameter (d1)

intermediate parameter (d1)

heat transfer perimeter of pipe (ft)

constant of integration (°F)

;5‘ (a1)

intermediate parameter (d1)

Laplace transform variable (d1)
shellside fluid temperature (°F)
Laplace transform of S (°F)

time (hr)

tubeside fluid temperature (°F)

Laplace transform of T (°F)

overall heat transfer coefficient (BTU/hr sq ft F°)
fluid velocity (ft/hr)

Id
V, V = definite integrals (°F)

5] = £
0

b
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N
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fluid flow rate (1b/hr) Accesion For \ -—J
NTIS CRA&!

pipe wall temperature (°F) DTIC TAB E{v '

Unannou-ced !

Laplace transform of W (°F) JuﬂMm;m: = ;

..............................

axlal distance along exchanger (ft) By j

axlal dilstance along exchanger (dl) mmn@nmﬁ/m "m'“;

intermediate parameter (d1) . Avwmb“”,§iihdpwf
= U A (i].) | H
e N




Ve Lt s 3 \\\
A = “L:H—X (a1) ’
< hy
Y, =
" (a1)
g h
¥, =E..._$... (a1)

{ = pipe wall thickness (ft)

= intermediate parameter (dl1}
root of auxiliary cubic (dl)
= time (d1)

Yy o U
1]

= radlal distance through pipe wall (ft)

¥ = intermediate parameter (dl)

P = density (1b/cu ft)

o = radial distance through pipe wall (d1)
£ 5 p’ = dummy variables

¥ = intermediate parameter (dl)

Subscripts:

ordinal u,umber of shell pass

= ordinal number of tube pass within a particular shell pass
= summation index

reference

= shellside

= tubeside

£ 3 0 ¥ OH <
i

pipe wall
As usual the use of an independent variable as a subscript of

a dependent variable indicates partial differentiation,

oT
as = — .
Tx d X




INTRODUCTION i;/

A multipass shell and tube exchanger may pe described
by a set of partial differential equations similar, in many
respects, to those describing a counterflow®*1 or one side
lumpedb’ exchanger., This set of equations may be thought of
as constituting a mathematical model of the exchanger.

Models of varyling degrees of complexity may be constructed
for the same exchanger., In this paper models are first
constructed which neglect the heat capacity of tube walls.
Refinements are then made which allow the walls to be
introduced as either lumped or distributed thermal capacity.

The models presented herein are quite formidable of aspect,
involving the definition of many sets of intermediate parameters.
It should be borne in mind that the question which must be
answered regarding the feasiblllty of use of a given model
1s not, "How complicated is the model?" but, "How much does
it cost to extract the desired information from the model?".

The desired information is here the frequency response
characteristics of the exchanger. This information may be
particularly easily extracted 1f an explicit expression l1s
obtainable for the transfer function. Such an expression

1s obtainable for the models considered. 1In fact, it is the
object of this paper to show how such explicit transfer
functions may be obtained.

The evaluation at a particular frequency of a transfer
function of the complexity here considered takes on the order

of 15 seconds on an intermediate speed digital computer and so

1 Numbers in parentheses designate References at end of paper.
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of Tx term in equation. Fig.2 The two possible orientations of

a 1-2 exchanger,

costs about $0.25. This cost would be cut at least 50 per cent
by the use of a high speed computer. Clearly, then, the use

of these models even for routine work is definitely feasible.

FUNDAMENTAL EQUATIONS
The partial differential equation describing the temper-

ature changes of a fluid flowing inside a pipe (see figure la)
®

is
1 UP
(1) Ty +VTt—V-V-.'.__c:—(S-T)

If the direction of flow of the fluid is reversed (figure 1b)
this becomes:

(2) - 7, +1m, =UP

X vt —_—

W Oy

The assumptions embodied in these equations are essentlally

(s - 1)

those employed to develop the usual expression for the

)

log mean temperature difference' and are as follows:

l. U, w; , c ., and v are constant.




2. Plug flow prevaills.

3. No temperature gradients exist in the fluid other
than 1n the axial direction.

4, No partial phase changes take place in the system,

Equations (1) and (2) are made dimensionless by the introduction

of new space and time variables,

(3) ¥y =—4
4y e = t vp
L

Using (3) and (4), (1) becomes:
VR
(5) Ty + -V— Te = °<\(S - T)
Each pass of a multipass exchanger 1s described by an equation
similar to (5). These equations together with appropriate

boundary conditions constitute one model of the exchanger.

THE 1 - 2n EXCHANGER

Two orientations of a 1-2 exchanger are possible (see
figure 2). For each orientation there are four possible
temperature forcing transfer functions., Forcing may be
applied on either the tube or shell side, and the response
may be taken on elther side.

Transfer functions will be derived for the case of
orientation 1, forcing on the tube side, with response on
either slde, Disturbances frequently take the path, forcing
on the tube side, response on the tube side. Corrective
action, however, frequently involves flow forcing which is

not here considered. The other six possible temperature




forcing transfer functions may be derived by procedures very
similar to the ones to be demonstrated.
The equations for the 1-2n exchanger (see figure 3)

are, In dimensionless form:

(6) (15)y + (Ti)g = =«(S - T;) J=1,3,5,...2n-1

(1) =(T;)

i)y * (Tilg = =u(s = T) 3

2,"",6,...21’1

]

2
(8) sy + S =§ o<z (T3 -8)
=1
Note that tubeside velocity 1s chosen as reference veloclty.

The additional assumption is made that the area of each pass

is the same. Boundary conditlons are:

(9) T (£,0) = T, (£,0)

e
0

3:5,7,°'°2n°1
(10) T; (¢,1) = 7, (t,1) j =2,4,6,...2n

(11) s(t,0) =0

The solution is carried out in detail in Appendix A.

THE GENERAL MULTIPASS SHELL AND TUBE EXCHANGER (m - 2mn)

Under the additiornal mild restriction that there be no
heat transfer between different shell passes (also a usual
steady state assumptionM ) it is possible to derive explicit
tranéfer functions for the general multipass shell and tube
exchanger having m shell passes and 2n tube passes per.shell
pass. The notation is illustrated by figure 4. When two

subscripts are used the first always refers to the number of

the ghell pass. The eguations take the form:
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FPig.3 The 1-2n exchanger. One other
orientation is possible.
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Fig.5 Heat-exchanger model with lumped changers. Many other orientations are

thernal capacity in wall. possible, but all are similarly handled.
even

(13) + (S; )y + T (Sidg

Z oy (T'.\ - Si) [eogd J
:‘ ven

Boundary conditions mirror the continuity of fluid flow, as

before. Detalls of the method are in Appendix B.

LUMPED THERMAL CAPACITY IN WALLS

Thus far models have been considered that have no
thermal capacity in the pipe walls., Now 1t will be shown
how lumped thermal capacity may be Introduced into the pipe
wall between any two fluids. Furthermore it will be shown

that the equation describing the more complicated system
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may be reduced to the form previously consldered.

The system of figure 5 has been described by the equations:

(14) T, + Ty =ou(5-7T)

(15) Sy + T Se o<, (T - S)

It may also be described by the set:

(16) Ty +T¢ = a, (W-T)

(17) Sy +r Se =2, (w - S)
(18) W =1b, (T - W) + b, (S - W)

Transforming and rearranging (18) one ottains:

b, b,
(19) W = T+ S
8+ Db + b, s + b, + b,

Using this expression for W 1in the°transforms of (16) and (17),

aa bi al bL
20) T s+a - T = 3
(20) b +‘: + 2 s + b + él s+ Db + b,

8 by 1‘_ a, b,

(21) 5, + [_rs +a, - T

3 =
8 + b + b1;3 g +b + b,

Equations (20) and (21) are of the same form as the transforms
of (14) and (15), but with different constants. The solution
from this point on is the same as before.

The treatment for the case of a wall in contact with
a single fluid (as a shell wall) is similar. It should

be noted that in a single exchanger tnc thermal capezcity of




some walls may be neglected, the thermal capnclty ol other
walls lumped, and the capacity of still other walls treated

in distributed fashion as will be described below.

DISTRIBUTED THERMAL CAPACITY IN WALLS

The system of figure 6 has been described by the equations:

1 U P . —— S(t,x) —_—
(22) 1, + . Ty = e (s -T) L Wit x,2) 1
T, x) —_—
(23) Sy + . Lsp = UP __ (7-53) ,5 Q
Vg We Cy .
r
It may also be described by the set: x=0 le

Pig.6 Heat-exchanger model with dis-

h, P _ tributed thermal capacity in wall.
(24) Tx + "1— T't = T \~W(4 ;X:O) - Tl
Vo Wo Cop
1 hy P
(25) s+ g8 = | wiexe) - s

(26) Wy =9a Wx)
The boundary conditions for (26) are:
(27) kA (W, ),\=3h.,. A ‘_w(t,x,o) - TX

(28) k(g ) _chs A‘ s - u(t,x,€) )|

The independent variables are mede dimensionless by the

transformations (3), (4), and,

(20) o~ = A
<

The reference velocity 1s Vep - After employing the Laplace

transformation and rearranging, the set takes the form:
(30) Ty + (s + e ) T = = ¥W(s,y,0)
(31) Ty + (rs + &2} T = e, l(s,y,1)

(32)  Vam - B*W =0

il




(33) (L )., %[W(s,v,00 7]

(34) (% L., s - a,,1]

Equation (32) may be solved using boundary conditions (33)

H

and (34) to obtain W(s,y,o- )} as a linear combination of

S, T, W(s,y,0), and W(s,y,1). 1If this expression for W(s,y,e )

1s evaluated at &= =6 and o~ =1, one obtains:
(35) "L W(s,y,00 + 5.7(s,5,1) = LT+ 53
(36) R.W(s,y,0) + S ¥W(s,¥y,1) = LT+ 3
where,

(37) %, = @(e* -€° ) + Y(® +e&7 )
(38) g, = 2Y%.

(39) g, = ¥ (£ 4+

(50) %, = 2V,

(81) § = 2¥

(22) g = g(® -¢%)+  Y(e® +e° )
(43) ®; = 2V,

(4) Gy = Ve(e® +eF )

From the linear set (35) and (36) one obtains a solution

of the form:
("I'S) W(s,y,O) =
(46) W(s,y,1) =

|
z
-3
+
o
M
vl

|
o)
W
3
+
o
&
ul

Substitution from (45) and (46) into (30) and (31) reduces
the system ol equations to the form previously ‘considered.

Walls which are in contact with a single fluid may be
simlilarly handleé. Any number of walls in an exchanger may
be handled in distributed fashlon as shown here.

The reader will have noted that the Fourier heat conduction

12




equation is uced in rectangular coordinates rather than
cylindrical, as is strictly required. .The error introduced
is not large and is outweighed by the convenlence of belng
able to obtain an expllcit transfer function in terms of
the elementary functions.

It should be noted that models in the literature of

counterflow'™™ |, parallel flow® , and one side lumpeéx
exchangers may be refined and thus undoubtedly brought into
better agreement with experimental work by the addition of
distributed thermal capacity in the pipe walls, as provided

for here.

APPENDIX A
Equations (6), (7), and (8) may be transformed and

put into the form:

(47) (Tj )y + 10, T = g § 4 J =1,3,5,...2n-1
(48) ~(T{)y +0 % = & 5 <& 1 =24,6,...o0
(49) Ty + £, T = oé[_’: ™,

where, 3=t

(50) £, = 8 4o

(51) f, = 2neez + rs

(52) g =°9

(53) g =%

The boundary conditions become:

(s4) T; (s,0) = Ty (s8,0) jJ =3,5T,..20n=1
(55) T; (s,1) = T (s,1) j =2,4,6,...2n

(s6) S(s,0) =0
Equations (47) and (48) possess the well-known solutlons :




. .
(s7) T, = e.{“_[ g, . zmay+ q; e J

- £
¥ + é)m, < 1
(58) Tj = -ef“'/ g, e'ff S dy + q; e{“f| 3

= 1,3,...2“-1

2,4,...2n

]

The q; may be evaluated 1n order.
from (57):
(59) a =T, (s,0)

For instance directly

Then slnce,

(60) T, (s,1) =T, (s,1)

q, may be obtained, etc. It may be verified that:

61) a, -
(61) g — | *7 T + D> ]

-

v E—p 2 , [P(-p¥x

= 1,3,...21'1"'1

e — ¥ )
(62) q, =V [iﬁE._{é]_+ v p(1-p* )] +ps g

1< | 1-p ._J

2,”’,.‘..271

where T (s,0) has been set to unity and,

(63) p -l

-ty
(64) V = / §g','£.e dy
(]
(65) v’=/ B'g;ief"’ " dy

For the extension of this method of derivation to the general

multipass case it will be important that the q; are linear

combinations of V, V', and 1 with coefficients of the form

ZE Cq e“94 | where the Cq. and Cq are constants.
?

The T, may be eliminated from (49) using (57) and (58)
and the resulting equation differentiated twice to remove
the integrals. One obtailns:

14




(GF) Ti,“ + 1y Sgq - 055y + (20, g, nf

t -3 !

1‘
—f‘lf‘ IS = 0

Three initial conditions are needed. 3J(s,0) is obtainable from
(56). §g (s,0) and §83 (s,0) are cbtainable by setting y = 0
before the first and second differentiatioﬁs, respectively'® .
§] (s,0) and §§ﬂ (s,0) turn out to be linear combinations
of the q; and thus linear combinations of V , v’ , and 1 with
ceefficiente of the same form ag before. The algebraic detalls
will be presented at the end of the anpendix so as not to confuse
the development.

The solution of (66) is of the form:
(67) T =5 %9 + 5, B 4 8, ey
where 2, , 4, and 73 are the roots of the auxiliary
cubic. These roots may most simply be found using Cardan's
formula? . E, , Ea, and E3 are related to the initial

conditions on- 3 by the linear set:

- — -
1T
§. ( S,o) 1 1 1 E‘
(68) | By (s0)] = , D92 Ep
Sy (s0)| |7 2% | B

¥
The E are thus also linear combinations of Vv , V , and unity.

One may define:

(69) E\ - K,V o+ M. V4 N,
2
3 3 3 ;

Fauation (67) may now be rewritten:

(70) §=V‘_K, emd 4%, e % + Xg e"‘:‘l]

+V'LM' e™y M, e 4 M, e“ﬂ]

+ LN‘ ey N, ™ 4w, e’*"]

kS

15
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|7 and ;ﬁ’ are defined from (70) by:

(1) § = ¥+ ¢ Vs gV

The )b are also of the form Cq ec""‘1 . All that must

now be done before J(s,1) (the shellside response) or T« (8,0)
(the tubeside response) can be evaluated numerically is to
evaluate V and V' . This may be accomplished using (71).

The symbol (¢ , p') is defined by:

]
(72)  (p , &) =/H""1

B3 -
Equation (71) is multiplied by g e ‘Y ano integrated with
respect to y between O and 1. Using the notation defined

by (72) this yields:

fy

(73) V=(%, e e V) avig,e e™)svi¢,ee
fy

Similarly, if (71) 1s multiplied by g, e :
' ; f :

(74) V' = (fu, 8, €°Y ) + V(¢ , g €1) 4V(Y, g, e )
The integrations indicated in (73) and (74) may be easily

)

14

carried out due to the simple form of the ¥: . The second
order set of linear algebraic equations defined by (73)
and (74%) may then be solved numerically for V and V' .
With V and V' in hand J(s,1) is available numerically from (71)
and Tz, (5,0) from (58) and (62).
A1l that remains ls to present expressions for the }i
as linear combinations of V , V' , and unlty; and to show the

results of the integrations indicated in (73) and (74).

This will be done using several sets of intermedlate parameters.

} 3, l?;_ - I?i)Q‘?% + 7i f'ﬂ.““)

(2 2) (2 &) % k)

(75) 2

wWh=




z) , 2 , and Z3j are similarly defined with (-f, ) substituted

for (f, ).
(76) R, = ~—PB%
1 -p
(77) Ra = ﬂ'l—-'gl_)_
1-p
n 1 - pn
78) R, = - —
( 1 -p (1-p)*
(79) R, - n _ p(1 - p™ ).

1-p (1-p)*

Finally, the K, M, and N defined by (69) are given by:

(80) K, = 2, Ry + Z Ry
2 2 z
3 3 3
(81) M, = z.t PR, +z:2pR,
3 3 3
(82) = Zy R + 2Z, Re
k3 1 k3
3 3 3

The $ are now given by (70) and (71). The integrals follow.

t 'l,“Fl ) 1]
‘o \e

PR
(¥, %y ) and (¥', e 1 ) are similarly evaluated using
K, , K. > K3 and M, , M, , M, , respectively, for

Ny, Ny, N, .

(0’4‘, ey ), (¢, ef"" ), and (¥°*, e{'f ) are similarly

evaluated with (f, ) substituted for (-f ) .
17
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APPENDIX B

Equations (12) and (13) may be transformed and put into

the form:
—.. f T.Q = §. Odd Jj
I "odd
) 20, +6 % cnZ T cven 1

Equations (84) possess known solutionsbﬂ :

even

1
_ = 5 ¥
(86) T,. =+ ¢ 1 S-g ety 3, dy + q; e 4 odd j
J - o i J
The a;; may again be evaluated in order. They will be
found to be linear comblnations of 2m definite integrals

|
v, , v/ ,v , Vv, , ...V., V5 ) and unity.

I
%
m
@
)
B
o

Q

e

(87) Vi v !

il

°l
(88) v, IS‘; e, ¢4 gy
T}i froﬁ’(86) may be substituted into (85) and the resulting
equations differentiated twice to eliminate the integrals. This
ylelds, for each of the §; s @ third order differential equation.

The solution may be written:

ey 4 Fyp e 22y bR, e i3

(89) 5, =7 ' i3

o
. "

The E; are not, however, linear combinations of only

vy 5 --. V! , 1). Because of the boundary condition

(90) F; (s,0) = S, (s,0) (0dd 1 , 1 £ 1)
(91) T. (s,1) = T, (s,1) (even 1),

the E{ are linear combinations also of § , (s,0) or §;,, (s,1)




depending on whether 1 18 odd or even respectively. Rearranging

(89) as was done to (67) to obtain (71):

-
I

(92) 3, Q/\:o Y, o+ Y v+ Y v, 4 }2:{ V, o+ ...
— -, —_ 0
+ )A;uvm + }(’in Vn' + P S (251)
The equation for T, has no term in 3;4 (s,0). 1In the
equation for §, the term in T, (s,1) may be eliminated by
substitution from the equation for §, . Proceeding stepwise

the following set is obtained from (92).

A,
(93) 5, = %.-,+2[¥.-; v, + pivl]
=

Each of the m equations of the set (93) may be multiplied

--ﬂt’

by g, e and integrated; and then by g, ev“j and integrated

as was done to (71), to-obtain the set of 2m equations:

™
- £ -,
(%) V, = (g , &, €1) +2 { (%ip,e, € 1)+ v (¥, e "’i
£ £ \
(95) v! = (#q » & e“)+i[ (58, e™3) 4 v (¢!, 7T
iey
This set may be solved for the constants (V, , ... vel).

The desired responses are then eagily evaluated, as before,
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